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Abstract-Cracks propagating at high speeds in metals generate heat at their tips which cannot be
conducted away in the very short time span of crack growth. The effect of heating on the crack tip
stress fields and on dynamic fracture toughness is analyzed using a method based on the theory of
generalized analytic functions_ In this method all deviations from a linear elastic- homogeneous
strain field are represented as fictitious body forces. allowing one to model inelastic and thermal
effects. Numerical computations of the crack tip stress and strain fields are performed assuming
steady-state, plane stress. mode-I dynamic crack growth with a fixed crack tip temperature field.
but with temperature and strain rate sensitive mechanical properties. The relationship between
dynamic stress intensity factor and crack velocity has been determined using competing ductile and
brittle fracture criteria. A careful analysis of the trailing wake has been performed to study its en-eel
on the crack tip stress field.

I. INTRODUCTION

When a crack grows through a metal that allows for some plastic deformation ahead of the
crack tip, an increase in temperature will be induced in a region around the crack tip. The
source of this temperature rise is the conversion of plastic work to heat. When the crack
growth speed is fast relative to the "speed" of thermal conduction, determined by the
material's thermal diffusivity, there is insufficient time for the heat generated to conduct
away from the crack prior to fracture. Thus temperature builds up in the crack tip plastic
zone. Because of the potential implications of the temperature rise at the crack tip on the
dynamic fracture process, various attempts have been made to numerically simulate the
temperature field at the crack tip. Rice and Levy (1969) esimated the temperature rise from
the plastic dissipation using a Dugdale model. Weichert and SchOnert (1974) assumed a
uniform circular distribution and later a uniform rectangular distribution (1978) to simulate
the temperature field. Kuang and Atluri (1985) used a moving mesh finite element analysis
to simulate the temperature field due to a uniform rectangular distribution and also due to
a singular 1/,. type distribution. Krishnakumar et al. (1989) and Deng (1994) used the
plastic dissipation from isothermal finite element calculations to estimate the temperature
field at the crack tip. With the advent of high speed infrared detectors. Zehnder and Rosakis
(1991), Rosakis et al. (1993) and Kallivayalil and Zehnder (1994) have demonstrated that
reliable measurements of the crack tip temperature field can be made even when the crack
speeds are of the order of 1000 m/s. In all cases the temperature rise is 300-500 C. This
temperature rise is significant enough to affect the material properties and perhaps the
mode of fracture itself. It is the intent of this paper to present a method for determining
the effect of an imposed temperature field on the dynamic fracture process.

The problem of a steadily growing mode I crack in plane stress under small scale
yielding conditions is considered here. A small strain, small displacement theory of con­
tinuum mechanics is assumed, thus an additive decomposition of strain into elastic and
non-elastic parts is permissible, i.e ..
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(1)

In this work, the non-elastic strains will be treated as an incompatible strain, ~', in an
elastic body. The incompatible strains may be due to plastic deformation, rt', or thermal
expansion, ~Ih,

~i = ~p'+~th, ~th = 'Y./(T-TJ, (2)

where T is the temperature and To is the reference temperature, 'Y. is the co-efficient of
thermal expansion and / the identity tensor. The self stress caused by the incompatible
strains, ~i, is determined by the method of fictitious body forces, first suggested by Eshelby
(1957). A systematic method for calculating self stresses for static problems was developed
by Wu and Hui (1986), and the method was further extended to solve steady state dynamic
crack problems by Wu (1988). This formulation has the advantage that only the plastically
deformed region at the crack tip needs to be discretized as opposed to finite element
formulations where the elastic region surrounding the plastic region has to be discretized
too. The formulation presented here provides the mathematical details for solving steady
state dynamic fracture problems and is particularly suited for rate dependent materials as
the steady state condition allows us to represent material derivatives in terms of derivatives
in the direction of crack propagation in a crack tip co-ordinate system, i.e., in a co-ordinate
frame (x, y) moving with the crack tip in the positive x direction,

(3)

where v is the crack tip velocity.
The effect of temperature on the dynamic fracture process is studied by imposing a

temperature field at the crack tip. The maximum temperature imposed is representative of
experimentally determined fields. The variation of the yield stress with temperature, the
softening due to the drop in elastic modulus and the differential thermal expansion are
explicitly included in our model. As the dynamic fracture process involves high strain rates,
a constitutive law that reflects these rate effects, similar to that used by Freund and
Hutchinson (1985) has been selected. The ductile to brittle transition is studied by con­
sidering competing crack growth criteria.

A careful analysis of the wake region behind the crack is also performed to determine
its effect on the crack tip stress fields. In determining the effect of the incompatible strain
in an elastic body, it is necessary to modify the boundary conditions of the original problem,
by the imposing of tractions defined by - ~ : §.i. fl, where fl, is the outward pointing normal
in the region where the domain of the incompatible strain intersects the boundary of the
body. In this work, these pseudo-tractions have been ignored and the implications of doing
so are discussed.

2. PRELIMINARY RESULTS FROM COMPLEX CALCULUS

A complex functionJ(z) is defined by

fez) = J(x, y) = u(x, y) + iv(x, y),

where u and v are real valued functions. Byf(t) we mean

I(x, -y) = u(x, -y)+iv(x, -y).

Further we use1(z) to denote f(t),

(4)

(5)



Thermo-mechanical analysis of crack growth

](x,y) = u(x, -y)-iv(x, -y).
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(6)

It should be noted that if fis analytic in a complex domain n, then so is]in il, the domain
conjugate to n. We define the following complex differential operators,

(7)

Note that when the operator i3~ acts on an analytic function it does result in its derivative.
Some results that follow from the definition of the above operators are

(8)

It follows from the Cauchy-Reimann conditions for an analytic functionfthat,

(9)

where 9 is any general function of a complex variable.

2.1. Solution ofa boundary value problem
Consider a two dimensional vector function f = ui + vj, with continuous partial deriva­

tives, defined over a simply connected domain A with boundary cA, where i, j are the unit
vectors in the Cartesian x and y directions. Green's formula is given by

f (01' ou) ~-.:;-: - -.:;-: dA = udx+vdy.
A ox OJ' (A

Letf= u+iv then using Green's formula it can be verified that,

(10)

f i"\ldA = -2
1
):. f dz,

A 1}.A f cJdA = - -2
1
): fdz,

A l}'A
(11)

where dA = dxdy, dz = dx+idy, dz = dx-idy. Consider the problem

cd=g(z), ZEA

f=l1(z), zEoA.

(12)

(13)

The solution to (12) is the sum of a particular solution and the homogeneous solution. The
homogeneous solution corresponds to an analytic function whose value is specified on the
boundary. For the domain A in Fig. 1, the solution was obtained by Vekua (1962) as

E

.T

R a

A

Q

Fig. 1. Domain over which the boundary value problem is defined.
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I t~ he::,) d.:' I f g dA'C(.:)l(:) = -. --,- - ._- '-,-
2m .iA =-: l[ A:-=

(14)

where
C(=) = I for an internal point like P,
C(z) = 1;2 for a point on a smooth portion of the boundary like Q,
C(=) = :I.;2l[ for corner points like R,
C(z) = 0 for an external point like T.
If the region A is the full space E, the boundary term vanishes ifj(z) -> z-II, as Izi -> Xi,

where Re (fJ) > O. The solution to the above problem then becomes,

(15)

In steady state problems, we are mostly interested in cases where the function, g, is
expressible asg = P,. where P is a complex function. Further. we are interested in situations
where P == 0, in AC

, the complement of some region A in E. In this case as shown in Wu
and H ui (1987) the theory ofdistributions as described in Schwartz (1966), may be employed
to obtain

(16)

2.2. The equations ofsteadr state plane elastodynamics in complex form
To apply the theory of generalized analytic functions, we express the governing field

equations in complex form. We define the following scaled coordinates and operators.

I l i l?=l = '2 ?'+:l.
1

(\ ,

:1. 2 = JI-(l'!cY.

( 17)

(18)

where c, and Cd are the shear wave speed and longitudinal wave speed respectively. The
complex quantities I) and I, defined below completely specify the in plane stress components
and hence we shall use them to represent the state of stress,

8 == (0',,+a 1 rl;2. I. == (0', -0',,+2iO',,)/2. (19)

The stress-strain relations in isotropic linear elastic materials can be expressed in complex
form as

" (1-2v)
Re(cu) =---8.

2p

(20)

(21 )

where U = U, + iu 1 , and u" u, are the Cartesian components of the in plane displacement.
In the absence of body forces. the equations of compatibility and momentum balance may
be expressed as

(22)
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The compatibility equation implies that () is the real part of an analytic function, i.e.,
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(23)

(24)

where </>(z,) is analytic. To determine the general solution to the momentum balance
equation (23), we define Aas

(25)

where r is an unknown complex function. Substituting the above equation into (23) and
making use of the following relations

(26)

eqn (23) reduces to

(27)

The general solution to (27) is

(28)

where f(Z2) and g(Z2) are analytic functions of Z2' These functions are however not inde­
pendent as they are related by the stress-strain law. The analyticity of the functions </>,j,g
implies that there exist functions L, F and G such that,

(29)

The stress-strain law (20) can be integrated to obtain the displacement according to

Substituting the above value of displacement into (21) we obtain,

(31)

implying that,

(32)

where IjJ is some analytic function. Thus we have shown that the in-plane stresses for steady
state elastodynamic problems without body force loading are uniquely determined by two
analytic functions </>(ZI) and IjJ(Z2) as follows:
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The equivalence between the stress functions ¢ and Ij; and the complex quantities Aand e
and the in plane stress components is as follows,

(33.34) (19)

¢, Ij; = e, I, ~ t1: (35)

In view of the complexity involved in representing this problem mathematically, these three
sets of quantities will be used interchangeably to represent the state of stress. This equiv­
alence also holds for fictitious stresses that will be defined later.

If body forces are present, eqns (22, 23) are inhomogeneous. As shown in Kallivayalil
(1995), in the case of infinite bodies, where the body forces are present in a bounded region,
the inhomogeneous equations can be solved by finding solutions to equations of the form

where

(36)

(37)

1
B=----

4(l-~n~~ ,
(38)

and fy and I., are the Cartesian components of the body force distribution. The above
equations are in the form of (12) and can be solved as described in subsection 2.1.

3. FORMULATION OF PROBLE\1

The stress field, Q, may be obtained as the superposition of three problems as illustrated
in Fig. 2. The three problems are:

(i) The square root singular stresses that develop in a linear elastic body due to the motion
of a crack at constant velocity, 1', characterized by the applied dynamic stress intensity
factor Kj. These stresses will be denoted by QeI, and are calculated in terms of the stress
functions ¢A, Ij;A defined below. The small scale yielding condition implies that the crack
can be modeled as semi-infinite with the tractions specified by the dynamic stress
intensity factor, Kj, as r ---> (n. The stress fields characterized by the dynamic stress
intensity factor, Kj, for steady crack growth are given in Freund (1990). The cor­
responding stress functions ¢A and Ij;A are

(39)

where A is defined as

(40)

(ii) The self stress due to inelastic effects modeled as an inhomogeneity moving through an
infinite uncracked body with constant velocity '1". These stresses are denoted by t1:~c

and will be calculated in terms of A~, and 8;:,.. The subscript uc denotes an uncracked
body.

(iii) The image stresses induced by releasing the tractions due to the self stress problem on
the prospective crack plane. These stresses will be denoted by Qim and will be calculated
in terms of ¢/m and Ij;im.

Solutions to problems 2 and 3 are now discussed.
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PROBLEM 1-
A A

(<ll ,'P )

STRESS INTENSITY

FACTOR FIELD

x

DIRECTION OF CRACK

PROPAGATION

PROBLEM II

DIRECTION OF MOTION

OF INHOMOGENEITY
Y

x

INHOMOGENEITY IN UNCRACKED BODY
DUE TO PLASTIC STRAIN, THERMAL STRAIN

AND VARIATION OF ELASTIC CONSTANTS

PROBLEM III

IMAGE TRACTIONS

x---
tit

DIRECTION OF CRACK

PROPAGATION

Y

Fig. 2. Superposition of problems.

3.1. Solution to problem 2
The self stress (J'~n induced by an inhomogeneity moving at constant velocity through

the uncracked body-:- is solved for using the results from Section 2.1. Any departure from a
linear elastic, homogeneous, isotropic state at a fixed reference temperature To is considered
an inhomogeneity. Thus the effects due to plastic flow, variation in material properties due
to a temperature field, thermal expansion or even a prescribed state of incompatible strain
are all referred to collectively as inhomogeneities. These inhomogeneities are represented
as fictitious body forces in a manner that is described now. All fictitious quantities are
represented as starred quantities.

The stress tensor is related to the elastic strain tensor by

(41)

where C(T) is the temperature dependent elasticity tensor. The stress may alternatively be
expressed as
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(42)

Further we define the following fictitious stresses:

(Ju~"/ = f;( T,,) : ["I,
- - -

(43)

where!! is the difference between the elasticity tensor at the reference temperature and the
elasticity tensor at a given temperature T,

~(T) = c;(T,,)-C;(T).

The state of self stress '!.-~" may be expressed in terms of the fictitious stresses as

The momentum balance equation may be expressed as

(44)

(45)

~~~ 02 U
V'(J:C-V' "!}(T):[e -v· f;(To):/:;!)' -V, f;(T,,):£*'h +fa=p-, (46)
-~~~ ot2

ftnh r;! f~,

where
~h is the fictitious body force representing the effect of the variation in elastic properties
due to a temperature field,
f;i is the fictitious body force representing the effect of plastic flow,
f;'i, is the fictitious body force representing the effect of thermal expansion, and fa is the
applied body force loading.

In this work we shall assume that there are no applied body forces. Thus total fictitious
body force acting on the body is

(47)

The fictitious stress '!.-:c, induced in the body E (see Fig. 2) due to the fictitious body forces
is obtained using (15, 36-38)

(48)

where the subscript uc implies that the quantity corresponds to the uncracked body. In eqn
(48) the region 0 is the region containing the inhomogeneity as shown in Fig. 2. If the
region 0 is bounded, the boundary conditions of the original problem do not have to be
modified. In the case of dynamic fracture, the region 0 is unbounded due to the plastic
wake region trailing the crack. This means that the boundary conditions have to be modified
by the fictitious tractions - ~: ~n, on the portion of the boundary aOI as indicated
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Tractions

2h

Qactive

Union of active plastic zone

and the region where temperature

gradients in the 'x' direction exist

Fig. 3. Schematic of inhomogeneity moving through uncracked body.

x
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schematically in Fig. 3. However in this study we shall ignore the effect of these boundary
tractions by not including the contribution from the portion of the boundary aQI to the
stress functions ¢:c and t/J~. In Section 3, the effect of ignoring these boundary tractions is
discussed.

To facilitate the analysis of rate dependent materials, it is convenient to represent the
body forces as follows. From the definition of the operator c" the partial derivatives with
respect to y, may be expressed as,

(49)

Since the body forces are expressed in terms of partial derivatives of x and y, the above
relation may be used to express the body forces in terms of partial derivatives of x and the
operator a,. The steady state condition allows us to then express the partial derivatives with
respect to x in a moving co-ordinate frame in terms of the crack velocity and the material
derivative from (3). These quantities will be referred to as active quantities. Terms involving
the partial differential operators a

CI
or ac , are referred to as residual quantities. Thus Ff

and F~ can be rewritten as

(50)

where the quantities g" g2' residual, and residual2 are given in Kallivayalil (1995). In
evaluating ¢:n t/J:c by substituting (50) in (48), it is convenient to decompose the region Q

shown in Fig. 3, into Qac/il'e and Qwake' The region where Igll, IY21 > 0, is denoted by Qac/ice,

while Qwake is the region behind the active region where Y" 92 = 0, and only residual
quantities exist. Using eqns (48, 50) the stress functions ¢:" t/J,~ for the fictitious stress ~~o

may be expressed as the sum

where

I V)dA'¢uctiloe(z I) = A 0 ~:",,_,__I
!1:

WIUl

z'J - Z I

t/JI~. = tjI(lctiU> + JjJresidua'. (51 )

(52)

(53)

and A, B are defined in eqn (38). The residual terms can be evaluated using (14), with 9
replaced by acj(residual,) and h replaced with (residual,). The contribution from the portion
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an2 of the boundary of the inhomogeneity shown in Fig. 3 vanishes, since the plastic strain
and temperature difference vanish on 00.2, However, the contribution from the portion an]

. 1 fh (reSidu.alj(Z;)) dy'
hm - j---+ 1,2

x'~-'lC 2ni ~h (z;-zJ (54)

does not vanish. For points in the vicinity of the crack tip, if the functions residual/z') are
bounded for y E [ - h, h], the contribution from the an] portion of the boundary to the
contour integral in (14) may be ignored and the residual terms are

¢reSiduat = A (re.,idual, ) tjJresidual = - B(residuaI2)' (55)

Using eqn (45), the actual self stresses in the uncracked body may be expressed as

(56)

I.U'(/k"

(57)

where a, Aare calculated using (33) and (34).

3.2. Solution to problem 3
To obtain traction free conditions on the crack faces, we negate the tractions caused

by the self stress problem described in the previous subsection, on the line representing the
crack face in the uncracked body. This problem is referred to as the image stress problem.

An evaluation of the terms awake and Awake in eqns (56, 57) indicates that

()U'Qke = _)~wuke

and hence the tractions on the crack face are due to active quantities only.
The tractions on the crack face, Zl = Z2 = t, t < 0, are given by

(58)

- (a~~(t) + ia';.(t)) = If,At) + A~c(t) = a¢(t)"clhc +b¢(t)"c/I•.e+ctjJ(t)"clice +dtjJ(t)"clwe = r(t),

(59)

where the constants a, b, c and dare

We define

(61)

According to the above definitions

(62)

where X is any general complex quantity. The traction boundary conditions may hence be
expressed as the limiting values of analytic functions as one approaches the crack face, i.e.,
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a(p+ +b¢- +cljl+ +dr[J- = ret) (a)

a¢- +b¢+ +cljl- +dr[J+ = r(t) (b)

b¢+ +a¢- +dljl+ +cr[J- = ret) (c)

b¢- +a¢+ +dljl- +cr[J+ = ret) (d).

1877

(63)

Subtracting (b) from (a) and using the fact that we require that the stresses and rotations
vanish at r;t:;, we obtain

Adding (a) and (b) and using the Plemlj formulae we obtain,

a¢ +cljl +b¢ +dr[J = ~~l~ fO r(t)J(t) dt
nifi, -Xc (t - z;)

(64)

(65)

The variable Zi is used to indicate that the analytic function can be expressed in terms of z,
Zj or Z2 as they all have the same value on the real line. Similarly using linear combinations
of (c) and (d) and solving the resulting equations, the image stress functions ¢im, ljIim which
determine the image stresses are,

(66)

(67)

where ~ is defined in (40). The condition ~ = 0 defines the Rayleigh wave speed, indicating
that steady state crack growth is not possible beyond the Rayleigh wave speed in accordance
with the results of Stroh (1990).

Using (51), (52) and (59) the image traction at t, due to a point inhomogeneity at z',
is given by

(68)

In order to calculate the image stresses according to eqns (66, 67), we must evaluate
integrals of the form

, fO Jldt
f(z,z) = ( ')( .

-Xc t-z t-z)

As shown in Kallivayalil (1995)

ni
fez, z') = .

(~+fl)

Substituting (68) into (66), (67) and using (70), the image stress functions are

(69)

(70)
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(71)

(72)

where

(73)

3.3. Stresses in the presence ofa moring crack
Using the results of the previous two subsections a local stress intensity factor may be

defined in terms of the stress functions ¢" and 1jJ,,, defined as

(74)

The local stress intensity factor, KiD is defined as,

Thus for a square root singularity to exist at the crack tip, we must have

Kill' = K1+KiD > 0

(75)

(76)

where K1 represents the applied stress intensity factor. There are many instances where the
resulting stress intensity factor, K'lp, is zero, implying that the elastic square root singular
field does not exist at the crack tip, as shown in Achenbach (1979) and Yang (1986). In the
next section, we provide a means of evaluating the crack tip stress intensity factor from an
energy balance.

3.4. M ode/ing of the wake region
Since the fictitious body forces are defined in terms of the gradients of the inhomo­

geneity, the active inelastic zone is defined as the region where these gradients exist. This
active region is assumed to be of finite extent. In the wake region, the linear elastic fields,
characterized by the stress intensity factor, are not dominant. The stress state in the wake
region sufficiently far away from the active region is well approximated by the wake terms
in eqns (56, 57). Using (45), (33), (34) and (19) the wake terms are computed to be

l v J ')J1(T)vwake _ _ ') (T) .1'1 ___1'1 _ ~ " .1'1
(J" - ~J1 " E" I _ v Bn I _ V Gkk

2( (T)- (T»l" -_._~ e J- 2(J1(T,J-J1(T»V .'< _J1(To )v f..T
J1 "J1 B" I _ VBn I _ V I.kk ( 1_ V) rJ.

(77)

It should be noted that there are stresses only in the x direction as the crack faces are
not constrained in the y direction. The state of stress is essentially one of uniaxial
compression. The pseudo tractions in Fig. 3 are given by (J~~ke. Since the active zone is
assumed to be of finite extent, the pseudo tractions must be such that if they alone were to
act on the material, it would not cause yielding in the current state of the material in the
wake region. The effect of ignoring these tractions is that the stresses in the wake region
may not be calculated accurately. The effect of ignoring these tractions on the stresses in
the vicinity of the crack tip is negligible and should a stress intensity factor field exist at
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the crack tip, it will be unaffected by ignoring these tractions as they have no opening
component.

From a knowledge of stresses in the wake region, the elastic energy density U,~, stored
in the wake may be determined. This allows us to perform an energy balance for the entire
process. As shown in Freund (1990) and Wu (1985), the energy balance for rate dependent
materials may be expressed as

I r fl<
GilI' = G-; In,,,,,,, (Ji',f! dA - -I< U:(y) dy, (78)

where G IIP represents the crack tip energy release rate and G represents the energy release
rate due to the remote stress intensity factor. Further the dynamic stress intensity factor in
plane stress may be determined from the energy release rate according to the relation,

f(v)K?;p
GilI' = E (79)

3.5. Constitutive relations
During dynamic fracture, the strain rate experienced in the crack tip region may be as

high as 106
S-I and temperatures at the crack tip may be as high as 500°C, hence constitutive

models appropriate for these conditions will have to be used. The strain rate also varies by
several orders of magnitude, from I S-1 to 106 S-I, hence the mechanisms that are active in
influencing the deformation are likely to vary as well. In this work the material is modeled
as an elastic-viscoplastic material.

It is assumed that only the shear modulus of the material varies with temperature and
that the Poisson's ratio is constant. The isothermal, static stress-strain curve for the material
at room temperature is shown in Fig. 4, and the variation of the shear modulus with
temperature is shown in Fig. 5, according to Wilson and Esler (1983). A constant Poisson's
ratio, determined using ultrasonic techniques at room temperature, of 0.34 is used for the
material at all temperatures. The static yield stress variation with temperature is shown in
Fig. 6, as determined by Wilson and Esler (1983).

The plastic behavior is modeled as rate dependent, assuming a J 2 flow theory with an
associated flow rule. The plastic response is assumed to be isotropic and incompressible.
The visco-plastic response is divided into two regimes separated by a transition plastic
strain rate, as suggested by Freund (1990). For strain rates below the transition strain rate,

1200

1000

800

0
(L

L 600

b

400

200

0.015
[

0.030

Fig. 4. Static stress-strain curve at room temperature.
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Fig. 5. Variation of shear modulus with temperature.

the thermally activated motion of dislocations past discrete obstacles is assumed to be the
rate controlling mechanism, while for strain rates above the transition strain rate, the
phonon drag experienced by the dislocations is assumed to be the rate controlling mech­
anism. The heat treatment given to the alloy results in it being precipitation hardened, thus
we believe that the obstacles to dislocation motion will be discrete. The constitutive equation
used for the f3 titanium alloy under consideration is

t > t,

(80)

where

y, = transition strain rate = 5 x 102
S-I for metals,

1200 ,----..,-----,-------r---,.----...,..----,
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::;s
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rri
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\f)

'i:J 800
Q)
>::

700

600
0 300 400 500 600

T, °e
Fig. 6. Static stress-strain curve at room temperature.
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Yo = phonon drag coefficient = 5 x 106
S -1 for metals,

It = temperature dependent stress that results in transition strain rate,
/leT) = temperature dependent shear modulus,
n = strain rate sensitivity index,
to = frequency factor for dislocation motion :0::0(106-107

) for metals
!iF = activation energy for discrete strong obstacles in fi-titanium.
K = Boltzmann's constant, !iFfK :0::0 8000e,
T = shear yield strength at absolute zero :0::0 1900 MPa,
IF = temperature dependent static yield strength,
I = (~SiiSij) 1/2 second invariant of deviatoric stress tensor,
T = absolute temperature.

1881

The transition stress is chosen such that it is above the static yield strength in shear at all
temperatures and below the shear strength at absolute zero temperature. The activation
energy is estimated from the values provided by Frost and Ashby (1985) for f3-titanium.
Modeling the precipitates as strong obstacles, a lower bound suggested by Frost and Ashby
for the shear yield strength at absolute zero is,

(81 )

where I is the mean spacing of the discrete obstacles and b the Burgers vector for the slip
system. The activation energy !iF may also be estimated according to Frost and Ashby
(1985) as

(82)

4. NUMERICAL RESULTS

The details of the numerical procedure are described in detail in Wu (1985) and are
not repeated here. The following normalizations are used in presenting the results:

i = I, 2

i,j = 1.2,3

ulf=aij/ao • i,j= 1,2,3

~ eiJK} E
e = ----- i,j = 1,2,3.

If (J(~v

Temperature is not normalized and is expressed using the Kelvin scale. Numerical results
reflecting the influence of temperature, rate sensitivity and material inertia are presented in
this section. Rate sensitivity is characterized by the rate sensitivity index n, and material
inertia characterized by the mach number In, which is the ratio of the crack velocity to the
shear wave velocity. These results are from a mesh in which 218 constant elements were
used. The smallest element at the crack tip was 1/1500 of the overall plastic zone size. Since
there are no benchmark problems to compare our solutions to, we use the following tests
as checks for the solution:

1) the stress field ahead of the crack should asymptotically approach the stress intensity
factor field;

2) the crack faces should be traction free;

SAS 33: 13-E
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Fig. 7. Imposed temperature field, crack tip is located at (0,0) : temperature rise contours in dc.

3) the state of stress in the wake region should not result in yielding.

The temperature field that we impose at the crack tip is shown in Fig. 7 and is such
that the maximum temperature rise at the crack tip is 450c C. This value of maximum
temperature was selected as it is representative of the temperatures actually measured in
this material during dynamic fracture as reported in Kallivayalil et al. (1994).

4.1. Opening stress
The variation in the opening stress O"yy on a line ahead of the crack with temperature

effects included is shown in Fig. 8. The opening stress without temperature effects is
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presented in Fig. 9. Comparing the corresponding curves in Figs 8 and 9 to each other it is
found that the effect of temperature rise is to lower the opening stresses in the vicinity of
the crack tip. In all cases it was verified that the stress field approaches the elastic stress
intensity factor field. In comparing the effects of rate sensitivity, the lowering of stress is
greatest when the material is less rate sensitive, i.e. as n increases. The effect of material
inertia is to prevent stress relief through plastic flow and hence the drop in opening stress
decreases as the crack speed increases. These results are consistent with the isothermal
analysis at room temperature of Krishna Kumar et al. (l989a).

4.2. Opening plastic strain rate and plastic strain
The opening strain rate on a line ahead of the crack is shown in Figs 10 and II. The

order of magnitude of the strain rates in the crack tip region is 106-107
S -I, which is typical

of values reported in Krishna Kumar (l989a). For a fixed loading condition represented
by a fixed Kj value, the strain rates ahead of the crack increase as the strain rate sensitivity
index increases or as the material becomes less rate sensitive. As would be expected, the
strain rates are higher for greater mach numbers. The effect of temperature is to lower the
strain rate. This result at first seems contradictory, considering the fact that the strain rate
increases with decreasing strain rate sensitivity, and increasing the temperature has a similar
effect to decreasing strain rate sensitivity. The lowering of strain rates when temperature
effects are included is because of the lowering of stresses in the crack tip region caused by
the lowering of elastic constants with temperature.

In Fig. 12 the plastic component of the opening strain ahead of the crack is examined.
Only the curve with temperature effects is presented as the effects of temperature on strain
are identical to its effects on the strain rate for a steady state problem. The maximum
opening strain is about 10 times the yield strain and hence about 10%. Thus even though
the strain rates are high the total accumulated plastic strain is not large. The effects of
inertia are evident in the reduction of the opening plastic strain with increasing crack
velocity. Though the strain rates ahead of the crack are higher at greater crack velocity, the
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time during which a material point is subjected to loading decreases and hence the plastic
strain experienced is lower as the crack velocity increases. The curves corresponding to
lower strain rate sensitivity indexes lie below those with higher indexes, demonstrating that
the effect of increasing rate sensitivity is to lower the plastic strain.

4.3. Elastic rate dominance
The material behavior as one approaches the crack tip, r -+ 0, is of power law type

when n < 3. Hence using the same arguments as Hui and Riedel (1981), the elastic strain
rates must dominate the plastic strain rates if a square root singularity exists at the crack
tip. Figure 13 plots the ratio of the norm of the plastic strain rate to the norm of the elastic
strain rate as a function of position ahead of the crack tip. It can be observed that as one
approaches the crack tip, the elastic rates dominate initially as one is in the elastic region,
then the rates become comparable as one approaches the plastic region and finally the
elastic rates dominate again at the crack tip. The figures also indicate that as the material
becomes less rate sensitive, i.e. n increases, the region over which the elastic strain rates
dominate, becomes smaller and shrinks towards the crack tip, as the curves for n = 1.3, lie
above the others.

4.4. Extent ofplastic zone
The plastic zone is partitioned into a high strain rate region where the effective plastic

strain rate is greater than the transition strain rate and the low strain rate region where the
effective strain rate is less than the transition strain rate. In this example, the transition
strain rate was taken to be 1000 s-1. The effect of inertia here is to enlarge the plastic zone
and also the high strain rate region. Similar effects have been reported by Krishna Kumar
et al. (1989b) for rate dependent non-hardening materials and by Deng (1990) for hardening
and non-hardening rate independent material. The effect of rate sensitivity is seen in the
presence of the reloading zone. For values of strain rate sensitivity index up to n = 1. I5,
no reloading zone was observed, but at a value of n = 1.3, a reloading zone begins to
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Fig. 13. Ratio of plastic strain rates to elastic strain rates with temperature effects included K, = 50
MPam L2

, (1" = 1100 MPa, Yo = 5 X 106 s-'.

appear. The primary loading zone, however, is similar for all of the values of n that were
considered. The region of high strain rate is much smaller than the overall plastic zone and
has dimensions which are about a tenth of the dimensions of the overall plastic zone,

4.5. Dynamic stress intensity factors
The relations between dynamic stress intensity factor and velocity are computed using

both ductile and brittle fracture criteria, The brittle criterion is enforced by requiring that
the opening stress at a fixed distance ahead of the crack be a critical value, (fen for sustained
crack growth, Similarly the ductile criterion is enforced by requiring that the critical opening
strain at a fixed distance be a critical value, Yer' The ductile and brittle criteria are imposed
at the same distance of 2 J1m ahead of the crack, This distance is well within the high strain
rate region for the values of stress intensity factor and crack velocities considered here, The
critical value of opening stress ahead of the crack, (fen for brittle fracture was taken to be
II times the static yield stress. The critical opening plastic strain for ductile fracture, Yer was
taken to be 3.5 times the static yield strain at room temperature corresponding to the total
strain at failure in a tensile test as shown in Fig, 14, The critical stress value is typical of
values used in Krishna Kumar (1989c), In calculating KI vs v curves, an initial guess of the
required Ki is made and then depending on whether a brittle criterion or a ductile criterion
is used, the opening stress (fn or opening plastic strain e~\ are determined respectively and
compared to the critical value (fer or Yen the value of KI is then increased or decreased until
the opening stress or opening plastic strain is within one percent of the critical value.

The following observations may be deduced from Fig. 15. The effect of temperature
when the brittle criterion is imposed is to enhance the fracture toughness at all velocities
and for all strain rate sensitivity values. It is worth noting that the curvature of the curves
obtained for a rate dependent material using the ductile failure criterion is very different
from that of the rate insensitive case. As shown in Deng (1990) the rate independent case
results in curves that are concave upwards, while for the rate dependent case, Krishna
Kumar (I989a) and Freund (1983) have obtained curves that are concave downwards, In
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either case the required value of stress intensity factor for sustained crack growth increases
as crack velocity increases. The effect of rate sensitivity is that using a ductile criterion it
enhances the fracture toughness while for a brittle criterion it decreases toughness.

In order to study possible fracture mode transitions from ductile to brittle, the two
criteria are plotted together in Fig. 16 for n = 1.3. The KI vs v relationship is determined
at each velocity by whichever criterion is satisfied first. The effect ofthe crack tip temperature
rise is to enhance the fracture toughness at lower velocities and to increase the velocity at
which the ductile to brittle transition may occur.

5. CONCLUSIONS

A method for simulating the effects of temperature on dynamic steady state crack
growth in a rate dependent material has been developed. The results indicate that the effect
of temperature is to provide stress relief at the crack tip, and thus an isothermal analysis
incorporating just the effects of rate dependent plasticity over estimates the stresses at the
crack tip. The decrease in strain rate when temperature effects are included may be attributed
to the drop in elastic modulus with temperature, indicating that the effect of temperature
on the elastic constants may be as important as the effect of temperature on the plastic
properties of the material. It should be noted that the temperature field obtained from the
numerically determined stress and strain rate fields need not be the same as the temperature
field imposed. For the constitutive relation and crack growth criteria used, the dynamic
fracture toughness of the material is slightly enhanced by the presence of the temperature
field at the crack tip. This is especially true when the brittle criterion is imposed. A more
dramatic effect is the shift of the transition point from ductile to brittle fracture modes to
higher velocities when temperature effects are included. The above conclusions regarding
fracture toughness were arrived at by imposing a temperature field that did not vary with
crack velocity and will have to be reevaluated if a temperature field dependent on crack
velocity is imposed. The accumulated plastic strain may be used as a criterion for the
existence of a reverse yielding zone as discussed in the section on modeling the wake. For
sufficiently low strain rate sensitivity, i.e. large 11, we find that a reverse yielding zone does
exist. Further it has been demonstrated that ignoring the unknown boundary conditions in
the wake region behind the crack tip does not affect a stress intensity field at the crack tip.
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